4.7 Article

Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 369, Issue -, Pages 129-137

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2013.03.015

Keywords

North China Craton; Tibetan Plateau; ambient noise tomography; lithospheric structure

Funding

  1. National Science Funds of China [40634021, 41174038, 41274056]
  2. China Postdoctoral Science Foundation [2012M521046]

Ask authors/readers for more resources

Understanding the Mesozoic-Cenozoic tectonic evolution of the North China Craton (NCC) and the NE Tibetan Plateau (TP) requires detailed knowledge of the lithospheric structure. Using dense regional networks and temporary deployments as well as updated reference models, we obtain the crust and upper mantle structure to 120 km depth. Our tomographic results show several major features, which have particular implications for the Weihe-Shanxi rift system (WSRS), deformation of the NE TP, and lithospheric evolution of the NCC. Beneath the WSRS, the crust gradually thickens from south to north, the lithospheric mantle gradually becomes slower, and the mid-lower crustal velocities are lower in the Weihe Rift, where rifting of the WSRS initiated. We suggest that along-strike variations of the lithospheric structures of the WSRS have played an important role in its multistage evolution. A low-velocity zone (LVZ) in the mid-crust beneath the Qilian Orogen is characterized by relatively higher velocities compared to LVZs in other parts of the TP. Thus, coherent lithospheric deformation may occur due to the high viscosity of the LVZ during early plateau growth, causing strong anisotropy to develop. The western NCC (including the Ordos Block and part of the Alashan Block) shows a high-velocity cratonic root extending to the base of our model. In contrast, the lithosphere of the eastern NCC appears to have been completely modified during the Mesozoic through Cenozoic and presents a thin lithosphere of relatively low velocities underlain by hot asthenosphere. We observed significant upper-mantle heterogeneities in the NCC, which may reflect its diachronous lithospheric modification. (C) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available