4.7 Article

Seasonal changes in ice sheet motion due to melt water lubrication

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 371, Issue -, Pages 16-25

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2013.04.022

Keywords

ice sheet; hydrology; glacier; modelling

Ask authors/readers for more resources

A numerical model is used to calculate how the motion of an idealized ice-sheet margin is affected by the subglacial drainage of melt water from its surface. The model describes the evolution of the drainage system and its coupling with ice flow through a sliding law that depends on the effective pressure. The results predict ice acceleration during early summer when the inefficient drainage system is temporarily overwhelmed. The growth of a more efficient drainage system leads to a subsequent slowdown of the ice very close to the margin, but high water pressure and ice velocity are maintained through much of the summer further inland. Annual mean ice velocity increases with the total quantity of melt water except close to the margin, where it is almost insensitive to the amount of melting. Short-term variability of melt water input leads to rapid changes in ice velocity that result in a slight increase in the mean velocity relative to a smoother input. Linked-cavity and poroelastic models for the distributed drainage system are compared, and their relative merits discussed. Two different sliding laws are considered, and the need for a holistic description of hydraulically controlled sliding is highlighted. (c) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available