4.7 Article

Electromagnetic detection of plate hydration due to bending faults at the Middle America Trench

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 351, Issue -, Pages 45-53

Publisher

ELSEVIER
DOI: 10.1016/j.epsl.2012.07.020

Keywords

subduction zones; marine geophysics; electromagnetics; conductivity

Funding

  1. National Science Foundation [OCE-08411141, OCE-0840894]
  2. Division Of Ocean Sciences
  3. Directorate For Geosciences [0840894] Funding Source: National Science Foundation
  4. Division Of Ocean Sciences
  5. Directorate For Geosciences [0841114] Funding Source: National Science Foundation

Ask authors/readers for more resources

Water plays an important role in the processes occurring at subduction zones since the release of water from the downgoing slab impacts seismicity and enhances arc volcanism. Geochemical indicators suggest that the Nicaraguan slab is anomalously wet, yet the mechanism of slab hydration remains poorly constrained. Extensional bending faults on the incoming oceanic plate of the Middle America Trench offshore Nicaragua have been observed to penetrate to mantle depths, suggesting a permeable pathway for hydration of the crust and serpentinization of the upper mantle. Low seismic velocities observed in the uppermost mantle of the incoming plate have been explained as serpentinization due to deep fluid penetration but could also be explained by intrinsic anisotropy and fractures in the absence of fluid circulation. Here we use controlled-source electromagnetic imaging to map the electrical resistivity of the crust and uppermost mantle along a 220 km profile crossing the trench offshore Nicaragua. Along the incoming plate our data reveal that crustal resistivity decreases by up to a factor of five directly with the onset of the bending faults. Furthermore, a strong azimuthal anisotropy compatible with conductive vertical fault planes is observed only on the faulted trench seafloor. The observed resistivity decrease and anisotropy can be explained by a porosity increase along vertical fault planes, which we interpret as evidence that the lithospheric bending faults provide the necessary permeable fluid pathways required for serpentinization of the uppermost mantle. This implies that most serpentinisation happens at the trench, with the width of the faulting region and the density of fractures controlling the extent of upper mantle alteration. This observation explains why the heavily faulted trench offshore Nicaragua is associated with an anomalously wet slab, whereas other sections of the Middle America Trench containing fewer bending faults have less fluid flux from the subducting slab. (c) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available