4.5 Article

All-Atomic Simulations on Human Telomeric G-Quadruplex DNA Binding with Thioflavin T

Journal

JOURNAL OF PHYSICAL CHEMISTRY B
Volume 119, Issue 15, Pages 4955-4967

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpcb.5b01107

Keywords

-

Funding

  1. NTU [RG 23/11]

Ask authors/readers for more resources

Ligand-stabilized human telomeric G-quadruplex DNA is believed to be an anticancer agent, as it can impede the continuous elongation of telomeres by telomerase in cancer cells. In this study, five well-established human telomeric G-quadruplex DNA models were probed on their binding behaviors with thioflavin T (ThT) via both conventional molecular dynamics (MD) and well-tempered metadynamics (WT-MetaD) simulations. Novel dynamics and characteristic binding patterns were disclosed by the MD simulations. It was observed that the K+ promoted parallel and hybridized human telomeric G-quadruplex conformations pose higher binding affinities to ThT than the Na+ and K+ promoted basket conformations. It is the end, sandwich, and base stacking driven by pi-pi interactions that are identified as the major binding mechanisms. As the most energy favorable binding mode, the sandwich stacking observed in (3 + 1) hybridized form 1 G-quadruplex conformation is triggered by reversible conformational change of the G-quadruplex. To further examine the free energy landscapes, WT-MetaD simulations were utilized on G-quadruplex-ThT systems. It is found that all of the major binding modes predicted by the MD simulations are confirmed by the WT-MetaD simulations. The results in this work not only accord with existing experimental findings, but also reinforce our understanding on the dynamics of G-quadruplexes and aid future drug developments for G-quadruplex stabilization ligands.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available