4.7 Review

Uranium-series dating of fossil coral reefs: Extending the sea-level record beyond the last glacial cycle

Journal

EARTH AND PLANETARY SCIENCE LETTERS
Volume 284, Issue 3-4, Pages 269-283

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.epsl.2009.04.045

Keywords

U-series chronology; coral reefs; sea-level change; Quaternary; MC-ICPMS; TIMS; mass spectrometry; high-precision

Ask authors/readers for more resources

Absolutely dated records of past sea-level change are extremely important for understanding the advance and retreat of the large ice sheets. When combined with other complementary climate archives and climate models, such records offer the potential to gain an improved understanding of Earth's natural climate cycles, providing a firmer basis for assessing the role of anthropogenic effects, such as greenhouse gas emissions, in modifying climate. The U-series dating of fossil coral reefs has been widely utilized to provide absolutely dated records of past sea-level change and numerous observations now exist for the past 130,000 years spanning the last glacial cycle. Despite this, controversies still exist regarding the exact timing and character of sea-level events within this time interval, and extending the sea-level history further back in time on the basis of robust and independent age constraints for older fossil reefs remains very elusive. This is primarily due to a progressive loss in the resolution of the U-series chronometer as one goes further back in time, coupled to a lack of well-preserved, dateable coral in older fossil reefs. To overcome these limitations, the primary challenges are three-fold. First, new analytical protocols are required to improve the resolution of the U-series chronometer Enhanced analytical precision must be coupled to accuracy through continued refinement of the U-series decay constant determinations and via the implementation of rigorous inter-laboratory calibration exercises. Second, efforts should continue to be focussed on gaining an improved understanding of the mechanisms controlling open-system exchange of the U-series isotopes in fossil reef systems. This will allow the number of 'reliable' U-series observations to be extended. Third, alternative dateable archives of past sea-level change must continue to be emphasized to further complement the coral reef database. These limitations are discussed in the context of current developments that further advance the application of U-series chronology to older fossil reef systems formed prior to the last glacial cycle. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available