4.6 Article

Effect of Donor-Acceptor Coupling on TICT Dynamics in the Excited States of Two Dimethylamine Substituted Chalcones

Journal

JOURNAL OF PHYSICAL CHEMISTRY A
Volume 119, Issue 45, Pages 11128-11137

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.jpca.5b08203

Keywords

-

Ask authors/readers for more resources

Significant effect of coupling between the electron donor and acceptor groups in intramolecular charge transfer (ICT) dynamics has been demonstrated by comparing the photophysical properties of two isomeric N,N-dimethylaminochalcone derivatives (namely, DMAC-A and DMAC-B). In the case of the DMAC-B molecule, the distance between the donor (N,N-dimethylaniline or DMA) and the acceptor (carbonyl) groups is larger by one ethylene unit as compared to that in the case of DMAC-A. The excited singlet (S-1) states of both the isomers have strong ICT character but their photophysical properties are remarkably different. In polar solvents, fluorescence quantum yields (and the lifetimes of the S-1 state) of DMAC-A are more than 2 orders of magnitude lower (and shorter) than those of DMAC-B. Remarkable differences in the photophysical properties of these two isomers arise due to occurrence of the ultrafast twisting of the DMA group (or the TICT process) during the course of deactivation of the S-1 state of the DMAC-A molecule, but not in the case of DMAC-B. In the later case, because of the presence of a large energy barrier along the twisting coordinate(s), TICT is not a feasible process, and hence, the S1 state of DMAC-B has the planar ICT structure. In the DMAC-A molecule, the strength of coupling between the donor and acceptor groups is relatively stronger because of a shorter distance between these groups. Femtosecond transient absorption spectroscopic measurements and DFT/TDDFT calculations have been adopted to establish the above aspects of the relaxation dynamics of the S, states of these two isomeric chalcones.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available