4.5 Article Proceedings Paper

Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves

Journal

DRYING TECHNOLOGY
Volume 32, Issue 16, Pages 1888-1904

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07373937.2014.919002

Keywords

Antioxidant activity; Blueberry leaf; Drying; Drying rate; Phenolic compound

Funding

  1. Natural Sciences and Engineering Research Council of Canada

Ask authors/readers for more resources

In the last few decades, researchers have found blueberry leaves to be an interesting source of different phenolic compounds, and drying is an important part of their postharvest and sample preparation processes. In the current study, blueberry leaves were dried using microwave-assisted hot air drying or hot air drying alone at 45, 60, and 75 degrees C to 10-15% wet basis. Corresponding drying characteristics were determined by fitting the moisture ratio obtained in each case with eight theoretical and semitheoretical models for hot air and microwave drying stages. It was observed that best fitting drying models for blueberry leaves depended not only on the nature of the biomaterial but also on the method of drying and the temperature of drying. Phenolic content, monomeric anthocyanin content, and the corresponding antioxidant activity in terms of 2,2-diphenyl-1-picrylhydrazyl (DPPH) inhibition activity and ferric reducing ability of plasma (FRAP) activity were evaluated for the leaf extract obtained following microwave extraction of the dried samples obtained using the above-mentioned drying methods and were compared to the corresponding bioactive compositional characteristics of freeze-dried blueberry leaves. It was observed that the freeze-dried sample had the highest content of total phenolics and total monomeric anthocyanins along with high antioxidant activity. Furthermore, extracts obtained from the microwave-dried leaf samples obtained with a drying temperature of 60 degrees C had highest total phenolic content and highest total monomeric anthocyanin content among all other drying methods and the extract had an antioxidant activity similar to the freeze-dried blueberry leaf samples, implying that microwave drying at 60 degrees C is a potential alternative to freeze drying for preservation of the phenolic components and antioxidant activity of dried blueberry leaves.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available