4.5 Article

Optimization of an Artificial Neural Network Topology for Predicting Drying Kinetics of Carrot Cubes Using Combined Response Surface and Genetic Algorithm

Journal

DRYING TECHNOLOGY
Volume 29, Issue 7, Pages 770-779

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07373937.2010.538819

Keywords

Artificial neural network; Carrot cubes; Convective drying; Genetic algorithm; Response surface methodology

Ask authors/readers for more resources

In this study, the advantages of integrated response surface methodology (RSM) and genetic algorithm (GA) for optimizing artificial neural network (ANN) topology of convective drying kinetic of carrot cubes were investigated. A multilayer feed-forward ANN trained by back-propagation algorithms was developed to correlate output (moisture ratio) to the four exogenous input variables (drying time, drying air temperature, air velocity, and cube size). A predictive response surface model for ANN topologies was created using RSM. The response surface model was interfaced with an effective GA to find the optimum topology of ANN. The factors considered for building a relationship of ANN topology were the number of neurons, momentum coefficient, step size, number of training epochs, and number of training runs. A second-order polynomial model was developed from training results for mean square error (MSE) of 50 developed ANNs to generate 3D response surfaces and contour plots. The optimum ANN had minimum MSE when the number of neurons, step size, momentum coefficient, number of epochs, and number of training runs were 23, 0.37, 0.68, 2,482, and 2, respectively. The results confirmed that the optimal ANN topology was more precise for predicting convective drying kinetics of carrot cubes.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available