4.5 Article

Optimization of Process Parameters for Spray Drying of Fermented Soy Milk

Journal

DRYING TECHNOLOGY
Volume 28, Issue 12, Pages 1445-1456

Publisher

TAYLOR & FRANCIS INC
DOI: 10.1080/07373937.2010.482694

Keywords

Isoflavone aglycones; Lactobacillus acidophilus; Probiotic; Response surface methodology; Water activity

Ask authors/readers for more resources

Generally used as an inexpensive source of high-quality protein with many other health-promoting properties, soy milk offers an interesting alternative when fermented. Fermentation with lactic acid bacteria brings about the value addition to soy milk, making a nutritious probiotic food product. Dehydration helps to achieve longer shelf life and easier transportation and storage, enabling wider distribution of the product. The present work pertains to optimization of process parameters for spray drying of fermented soy milk using response surface methodology (RSM). The process parameters studied include inlet air temperature, aspirator speed (air flow rate), feed flow rate, and atomization pressure. The experiments were designed using the central composite design tool. Residual moisture content was found to be low at higher inlet air temperature, lower feed flow rate, higher atomization pressure, and higher air flow rate. Porosity reduced with increased atomization pressure. Higher product yield was obtained at high air flow rate and low feed flow rate. The increase in the atomization pressure increases the cohesiveness between particles, resulting in reduced flowability. An increase in the inlet air temperature greatly reduces the viability and the isoflavone aglycone content in the product. Protein denaturation during the process was found to reduce the product solubility.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available