4.7 Review

Functionalizing bioinks for 3D bioprinting applications

Journal

DRUG DISCOVERY TODAY
Volume 24, Issue 1, Pages 198-205

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.drudis.2018.09.012

Keywords

-

Funding

  1. National Research foundation (NRF) of South Africa

Ask authors/readers for more resources

3D bioprinting has emerged as the intersection between chemistry, biology and technology. Through its integration of cells, biocompatible materials and robotic-controlled dispensing systems, the process enables the production of structures that are biomimetic and functional, thus revolutionizing the concept of tissue engineering. One of the biggest limitations of 3D bioprinting for tissue engineering is the lack of printable materials (bioinks) with all-inclusive properties desirable for the construction of engineered 'bio-physico-functional' tissues and organs. Thus, bioinks are required to be functionalized or altered to produce the most desirable bioarchetypes. Functionalization methods vary across chemical, mechanical, physical and biological methods, and common methods include blending of materials, coatings, crosslinking and exploiting functional groups. In this short review, a description and critical comparison of reported functionalization methods, focusing on their effects and contributions toward bioinks, have been presented.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available