4.4 Article

Complexation of novel thiomers and insulin to protect against in vitro enzymatic degradation - towards oral insulin delivery

Journal

DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY
Volume 45, Issue 1, Pages 67-75

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.1080/03639045.2018.1517776

Keywords

Thiomers; insulin; polymer-protein complexes; enzymatic degradation; oral protein delivery

Funding

  1. Institute for Health and Wellbeing Research, Robert Gordon University
  2. Scottish Overseas Research Scholarship Awards Scheme

Ask authors/readers for more resources

A significant barrier to oral insulin delivery is its enzymatic degradation in the gut. Nano-sized polymer-insulin polyelectrolyte complexes (PECS) have been developed to protect insulin against enzymatic degradation. Poly(allylamine) (Paa) was trimethylated to yield QPaa. Thiolation of Paa and QPaa was achieved by attaching either N-acetylcysteine (NAC) or thiobutylamidine (TBA) ligands (Paa-NAC/QPaa-NAC and Paa-TBA/QPaa-TBA thiomers). PEC formulations were prepared in Tris buffer (pH 7.4) at various polymer: insulin mass ratios (0.2:1-2:1). PECS were characterized by %transmittance of light and photon correlation spectroscopy. Insulin complexation efficiency and enzyme-protective effect of these complexes were determined by HPLC. Complexation with insulin was found to be optimal at mass ratios of 0.4-1:1 for all polymers. PECS in this mass range were positively-charged (20-40 mV), nanoparticles (50-200 nm), with high insulin complexation efficiency (>90%). Complexation with TBA polymers appeared to result in disulfide bridge formation between the polymers and insulin. In vitro enzymatic degradation assays of QPaa, Paa-NAC, and QPaa-NAC PECS showed that they all offered some protection against insulin degradation by trypsin and alpha-chymotrypsin, but not from pepsin. QPaa-NAC complexes with insulin are the most promising formulation for future work, given their ability to offer protection against intestinal enzymes. This work highlights the importance of optimizing polymer structure in the delivery of proteins.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available