4.4 Article

Self-assembled L-alanine derivative organogel as in situ drug delivery implant: characterization, biodegradability, and biocompatibility

Journal

DRUG DEVELOPMENT AND INDUSTRIAL PHARMACY
Volume 36, Issue 12, Pages 1511-1521

Publisher

TAYLOR & FRANCIS LTD
DOI: 10.3109/03639045.2010.488694

Keywords

Biocompatibility; cytotoxicity; degradation; histological analysis; organogel; phase transition temperature

Funding

  1. National Natural Science Foundation of China [30772670]

Ask authors/readers for more resources

Objective: The purpose of this work is to prepare and characterize the novel in situ forming implants, obtained through self-assembling of N-stearoyl-L-alanine methyl ester (SAM) in pharmaceutical oils, and to evaluate the biodegradability and biocompatibility of this organogel system. Methods: Minimum gelation concentration was used to measure the gelling ability of gelator SAM in different oils to select the optimal oil for further research. Phase transition temperatures of SAM/soybean oil organogels were determined by differential scanning calorimetry. Comparative studies on the in vitro degradation and in vivo degradation of SAM/soybean oil organogels in mice were investigated. Cytotoxicity tests and histological analysis of SAM/soybean oil organogels were studied by using mouse fibrosarcoma cells and mouse, respectively. Results: As an organogelator, SAM could gel a variety of oils at different minimum gelation concentration. Among them, it had the best-gelling ability in soybean oil, and the SAM/soybean oil organogel could be turned into gels abruptly at body temperature when the concentration of SAM was higher than 5% (w/v) to be used as an injectable system. The in vitro degradation rate of organogel was inversely proportional to the organogelator concentration, whereas the degradation rate in vivo was much higher than in vitro, and gels were almost disappeared after 6 weeks. The selected formulation showed excellent biocompatibility as tested by in vitro cytotoxicity and in vivo histological evaluation. Conclusion: SAM/soybean oil organogel has excellent biodegradability and biocompatibility, which indicates that it has a great potential for safe in situ forming drug delivery.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available