4.3 Article

The incretin effect in cats: comparison between oral glucose, lipids, and amino acids

Journal

DOMESTIC ANIMAL ENDOCRINOLOGY
Volume 40, Issue 4, Pages 205-212

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.domaniend.2011.01.002

Keywords

Feline; Diabetes mellitus; GIP; GLP-1

Funding

  1. Winn Feline Foundation
  2. Brasley Fellowship

Ask authors/readers for more resources

Incretin hormones are secreted from the intestines in response to specific nutrients. They potentiate insulin secretion and have other beneficial effects in glucose homeostasis. We aimed to study the incretin effect in cats and to compare the effect of oral glucose, lipids, or amino acids on serum concentrations of insulin, total glucose-dependent insulinotropic peptide (GIP) and total glucagon-like peptide 1 (GLP-1). Ten healthy cats were used in a repeated measures design. Glucose, lipid, or amino acids were administered through nasoesophageal tubes on separate days. Blood glucose (BG) concentrations were matched between experiments by measuring BG every 5 min and infusing glucose intravenously at a changing rate. Intravenous glucose infusion with no prior treatment served as control. The incretin effect was estimated as the difference in insulin area under the curve (AUC) after oral compared with intravenous glucose. Temporal changes and total amount of hormone secretions were compared between treatment groups with the use of mixed models. Total glucose infused (TGI) at a mean dose of 0.49 g/kg resulted in slightly higher BG compared with 1 g/kg oral glucose (P = 0.038), but insulin concentrations were not significantly different (P = 0.367). BG and the TGI were not significantly different after the 3 oral challenges. Total GIP AUC was larger after lipids compared with amino acids (P = 0.0012) but GIP concentrations did not increase after oral glucose. Insulin and GIP concentrations were positively correlated after lipid (P < 0.001) and amino acids (P < 0.001) stimulations, respectively, but not after oral glucose stimulation. Total GLP-1 AUC was similar after all three oral stimulations. Insulin and GLP-1 concentrations were positively correlated after glucose (P = 0.001), amino acids (P < 0.001), or lipids (P = 0.001) stimulations. Our data indirectly support an insulinotropic effect of GIP and GLP-1. Potentiation of insulin secretion after oral glucose is minimal in cats and is mediated by GLP-1 but not GIP. (C) 2011 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available