4.3 Article

A proteome-wide visual screen identifies fission yeast proteins localizing to DNA double-strand breaks

Journal

DNA REPAIR
Volume 12, Issue 6, Pages 433-443

Publisher

ELSEVIER
DOI: 10.1016/j.dnarep.2013.04.001

Keywords

Fission yeast; Schizosaccharomyces pombe; DNA double-strand break; DNA damage response; DNA repair; ORFeome

Funding

  1. Chinese Ministry of Science and Technology
  2. Beijing Municipal Government

Ask authors/readers for more resources

DNA double-strand breaks (DSBs) are a major threat to genome integrity. Proteins involved in DNA damage checkpoint signaling and DSB repair often relocalize and concentrate at DSBs. Here, we used an ORFeome library of the fission yeast Schizosaccharomyces pombe to systematically identify proteins targeted to DSBs. We found 51 proteins that, when expressed from a strong exogenous promoter on the ORFeome plasmids, were able to form a distinct nuclear focus at an HO endonuclease-induced DSB. The majority of these proteins have known connections to DNA damage response, but few have been visualized at a specific DSB before. Among the screen hits, 37 can be detected at DSBs when expressed from native promoters. We classified them according to the focus emergence timing of the endogenously tagged proteins. Eight of these 37 proteins are yet unnamed. We named these eight proteins DNA-break-localizing proteins (Dbls) and performed preliminary functional analysis on two of them, Dbl1 (SPCC2H8.05c) and Dbl2 (SPCC553.01c). We found that Dbl1 and Dbl2 contribute to the normal DSB targeting of checkpoint protein Rad26 (homolog of human ATRIP) and DNA repair helicase Fml1 (homolog of human FANCM), respectively. As the first proteome-wide inventory of DSB-localizing proteins, our screen result will be a useful resource for understanding the mechanisms of eukaryotic DSB response. (c) 2013 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available