4.3 Article

Recruitment and retention dynamics of RECQL5 at DNA double strand break sites

Journal

DNA REPAIR
Volume 11, Issue 7, Pages 624-635

Publisher

ELSEVIER
DOI: 10.1016/j.dnarep.2012.05.001

Keywords

RECQL5; Micro-irradiation; Confocal laser microscopy

Funding

  1. National Institute on Aging, NIH [AG000726-20]

Ask authors/readers for more resources

RECQL5 is one of the five human RecQ helicases, involved in the maintenance of genomic integrity. While much insight has been gained into the function of the Werner (WRN) and Bloom syndrome proteins (BLM), little is known about RECQL5. We have analyzed the recruitment and retention dynamics of RECQL5 at laser-induced DNA double strand breaks (DSBs) relative to other human RecQ helicases. RECQL5-depleted cells accumulate persistent 53BP1 foci followed by gamma-irradiation, indicating a potential role of RECQL5 in the processing of DSBs. Real time imaging of live cells using confocal laser microscopy shows that RECQL5 is recruited early to laser-induced DSBs and remains for a shorter duration than BLM and WRN, but persist longer than RECQL4. These studies illustrate the differential involvement of RecQ helicases in the DSB repair process. Mapping of domains within RECQL5 that are necessary for recruitment to DSBs revealed that both the helicase and KIX domains are required for DNA damage recognition and stable association of RECQL5 to the DSB sites. Previous studies have shown that MRE11 is essential for the recruitment of RECQL5 to the DSB sites. Here we show that the recruitment of RECQL5 does not depend on the exonuclease activity of MRE11 or on active transcription by RNA polymerase II, one of the prominent interacting partners of RECQL5. Also, the recruitment of RECQL5 to laser-induced damage sites is independent of the presence of other DNA damage signaling and repair proteins BLM, WRN and ATM. Published by Elsevier B.V.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available