4.3 Article

Increased uracil insertion in DNA is cytotoxic and increases the frequency of mutation, double strand break formation and VSG switching in Trypanosoma brucei

Journal

DNA REPAIR
Volume 11, Issue 12, Pages 986-995

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2012.09.007

Keywords

Trypanosoma brucei; Deoxyuridine triphosphate; nucleotidohydrolase; dUTPase; Uracil-DNA glycosylase; UNG; Uracil

Funding

  1. Programa Ramon & Cajal (Ministerio de Economia y Competitividad, Spain)
  2. Plan Nacional de Investigacion (Ministerio de Economia y Competitividad, Spain) [SAF2010-20059, SAF2011-27860]
  3. RICE FIS Network [RD06/0021, RD06/0010]
  4. Junta de Andalucia [BIO-199, CVI 05367, CTS-5841]

Ask authors/readers for more resources

Deoxyuridine 5'-triphosphate pyrophosphatase (dUTPase) and uracil-DNA glycosylase (UNG) are key enzymes involved in the control of the presence of uracil in DNA. While dUTPase prevents uracil misincorporation by removing dUTP from the deoxynucleotide pool, UNG excises uracil from DNA as a first step of the base excision repair pathway (BER). Here, we report that strong down-regulation of dUTPase in UNG-deficient Trypanosoma brucei cells greatly impairs cell viability in both bloodstream and procyclic forms, underscoring the extreme sensitivity of trypanosomes to uracil in DNA. Depletion of dUTPase activity in the absence of UNG provoked cell cycle alterations, massive dUTP misincorporation into DNA and chromosomal fragmentation. Overall, trypanosomatid cells that lack dUTPase and UNG activities exhibited greater proliferation defects and DNA damage than cells deficient in only one of these activities. To determine the mutagenic consequences of uracil in DNA, mutation rates and spectra were analyzed in dUTPase-depleted cells in the presence of UNG activity. These cells displayed a spontaneous mutation rate 9-fold higher than the parental cell line. Base substitutions at A:T base pairs and deletion frequencies were both significantly enhanced which is consistent with the generation of mutagenic AP sites and DNA strand breaks. The increase in strand breaks conveyed a concomitant increase in VSG switching in vitro. The low tolerance of T. brucei to uracil in DNA emphasizes the importance of uracil removal and regulation of intracellular dUTP pool levels in cell viability and genetic stability and suggests potential strategies to compromise parasite survival. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available