4.3 Article

Light-induced activation of class II cyclobutane pyrimidine dimer photolyases

Journal

DNA REPAIR
Volume 9, Issue 5, Pages 495-505

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2010.01.014

Keywords

UV/blue light; Flavoprotein; Photolyase; DNA repair; Electron-paramagnetic resonance; Electron-nuclear double resonance

Funding

  1. DFG [Sonderforschungsbereich 498, A2, 526, BA 985/10-3]
  2. NIH [GM37684]

Ask authors/readers for more resources

Light-induced activation of class II cyclobutane pyrimidine dimer (CPD) photolyases of Arabidopsis thaliana and Oryza sativa has been examined by UV/Vis and pulsed Davies-type electron-nuclear double resonance (ENDOR) spectroscopy, and the results compared with structure-known class I enzymes, CPD photolyase and (6-4) photolyase. By ENDOR spectroscopy, the local environment of the Flavin adenine dinucleotide (FAD) cofactor is probed by virtue of proton hyperfine couplings that report on the electron-spin density at the positions of magnetic nuclei. Despite the amino-acid sequence dissimilarity as compared to class I enzymes, the results indicate similar binding motifs for FAD in the class II photolyases. Furthermore, the photoreduction kinetics starting from the FAD cofactor in the fully oxidized redox state, FAD(ox), have been probed by UV/Vis spectroscopy. In Escherichia coli (class I) CPD photolyase, light-induced generation of FADH(center dot) from FAD(ox), and subsequently FADH(-) from FADH(center dot), proceeds in a step-wise fashion via a chain of tryptophan residues. These tryptophans are well conserved among the sequences and within all known structures of class I photolyases, but completely lacking from the equivalent positions of class II photolyase sequences. Nevertheless, class II photolyases show photoreduction kinetics similar to those of the class I enzymes. We propose that a different, but also effective, electron-transfer cascade is conserved among the class II photolyases. The existence of such electron transfer pathways is supported by the observation that the catalytically active fully reduced flavin state obtained by photoreduction is maintained even under oxidative conditions in all three classes of enzymes studied in this contribution. (C) 2010 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available