4.7 Article

Red noise increases extinction risk during rapid climate change

Journal

DIVERSITY AND DISTRIBUTIONS
Volume 19, Issue 7, Pages 815-824

Publisher

WILEY
DOI: 10.1111/ddi.12038

Keywords

Climate change; colour; environmental noise; extinction risk; range shifting; spatial population dynamics

Funding

  1. UKPopNet studentship

Ask authors/readers for more resources

Aim As the global climate is changing rapidly, there is a need to make conservation decisions to facilitate species' persistence under climate change. Models employed to make predictions regarding the impacts of climate change on species' distributions, and ultimately persistence, typically assume that interannual variability in environmental conditions is independent between years. However, the colour of environmental noise has been shown to affect extinction risk in populations occupying spatially static environments, and should therefore affect persistence during climate change. This study aims to investigate the importance of noise colour for extinction risk during climate-induced range shifts. Methods We use a spatially explicit coupled map lattice with a latitudinal gradient in climatic suitability, together with time series of environmental noise, to simulate periods of directional climate change and investigate the effects of noise colour on extinction risk and range size. Results Extinction risk increases with reddening of the environmental noise, and this effect is particularly pronounced over short time frames when climate change is rapid. Main conclusions Given that management decisions are typically made over such short time frames, and the rapid rates of climate change currently being experienced, we highlight the importance of incorporating realistic time series of environmental noise into models used for conservation planning under climate change.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available