4.5 Article

The mood stabiliser lithium suppresses PIP3 signalling in Dictyostelium and human cells

Journal

DISEASE MODELS & MECHANISMS
Volume 2, Issue 5-6, Pages 306-312

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dmm.001271

Keywords

-

Funding

  1. Wellcome Trust
  2. MRC [MC_U105115237] Funding Source: UKRI
  3. Medical Research Council [MC_U105115237] Funding Source: researchfish

Ask authors/readers for more resources

Bipolar mood disorder (manic depression) is a major psychiatric disorder whose molecular origins are unknown. Mood stabilisers offer patients both acute and prophylactic treatment, and experimentally, they provide a means to probe the underlying biology of the disorder. Lithium and other mood stabilisers deplete intracellular inositol and it has been proposed that bipolar mood disorder arises from aberrant inositol (1,4,5)-trisphosphate [IP3, also known as Ins(1,4,5)P-3] signalling. However, there is no definitive evidence to support this or any other proposed target; a problem exacerbated by a lack of good cellular models. Phosphatidylinositol (3,4,5)-trisphosphate [PIP3, also known as PtdIns(3,4,5)P-3] is a prominent intracellular signal molecule within the central nervous system (CNS) that regulates neuronal survival, connectivity and synaptic function. By using the genetically tractable organism Dictyostelium, we show that lithium suppresses PIP3-mediated signalling. These effects extend to the human neutrophil cell line HL60. Mechanistically, we show that lithium attenuates phosphoinositide synthesis and that its effects can be reversed by overexpression of inositol monophosphatase (IMPase), consistent with the inositol-depletion hypothesis. These results demonstrate a lithium target that is compatible with our current knowledge of the genetic predisposition for bipolar disorder. They also suggest that lithium therapy might be beneficial for other diseases caused by elevated PIP3 signalling.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available