4.3 Article Proceedings Paper

A new formulation for the Traveling Deliveryman Problem

Journal

DISCRETE APPLIED MATHEMATICS
Volume 156, Issue 17, Pages 3223-3237

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dam.2008.05.009

Keywords

Traveling deliveryman problem; Integer programming; Branch-and-cut algorithms

Ask authors/readers for more resources

The Traveling Deliveryman Problem is a generalization of the Minimum Cost Hamiltonian Path Problem where the starting vertex of the path, i.e. a depot vertex, is fixed in advance and the cost associated with a Hamiltonian path equals the sum of the costs for the layers of paths (along the Hamiltonian path) going from the depot vertex to each of the remaining vertices. In this paper, we propose a new Integer Programming formulation for the problem and computationally evaluate the strength of its Linear Programming relaxation. Computational results are also presented for a cutting plane algorithm that uses a number of valid inequalities associated with the proposed formulation. Some of these inequalities are shown to be facet defining for the convex hull of feasible solutions to that formulation. These inequalities proved very effective when used to reinforce Linear Programming relaxation bounds, at the nodes of a Branch and Bound enumeration tree. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available