4.6 Article

A wavelet-based dominant feature extraction algorithm for palm-print recognition

Journal

DIGITAL SIGNAL PROCESSING
Volume 23, Issue 1, Pages 244-258

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.dsp.2012.06.016

Keywords

Feature extraction; Classification; Entropy based information content; Dominant wavelet-domain feature; Modularization

Ask authors/readers for more resources

In this paper, a multi-resolution feature extraction algorithm for palm-print recognition is proposed based on two-dimensional discrete wavelet transform (2D-DWT), which efficiently exploits the local spatial variations in a palm-print image. The entire image is segmented into several small spatial modules and the effect of modularization in terms of the entropy content of the palm-print images has been investigated. A palm-print recognition scheme is developed based on extracting dominant wavelet features from each of these local modules. In the selection of the dominant features, a threshold criterion is proposed, which not only drastically reduces the feature dimension but also captures precisely the detail variations within the palm-print image. It is shown that, because of modularization of the palm-print image, the discriminating capabilities of the proposed features are enhanced, which results in a very high within-class compactness and between-class separability of the extracted features. The effect of using different mother wavelets for the purpose of feature extraction has been also investigated. A principal component analysis is performed to further reduce the feature dimension. From our extensive experimentations on different palm-print databases, it is found that the performance of the proposed method in terms of recognition accuracy and computational complexity is superior to that of some of the recent methods. (C) 2012 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available