4.6 Article

Wavelet based local tomographic image using terahertz techniques

Journal

DIGITAL SIGNAL PROCESSING
Volume 19, Issue 4, Pages 750-763

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.dsp.2008.06.009

Keywords

Terahertz; T-rays; Wavelet; Computed tomography (CT); Filtered back projection (FBP)

Ask authors/readers for more resources

Terahertz computed tomography has been developed based on coherent THz detection and filtered back projection (FBP) algorithms, which allows the global imaging of the internal structure and extraction of the frequency dependent properties. It offers a promising approach for achieving non-invasive inspection of solid materials. However, with traditional CT techniques. i.e. FBP algorithms, full exposure data are needed for inverting the Radon transform to produce cross sectional images. This remains true even if the region of interest is a small subset of the entire image. For time-domain terahertz measurements, the requirement for full exposure data is impractical due to the slow measurement process. This paper explores time domain reconstruction of terahertz measurements by applying wavelet-based filtered back projection algorithms for recovery of a local area of interest from terahertz measurements within its vicinity, and thus improves the feasibility of using terahertz imaging to detect defects in solid materials and diagnose disease states for clinical practise, to name a few applications. (c) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available