4.6 Article Proceedings Paper

Synthesis of confinement structure of Sn/C-C (MWCNTs) composite anode materials for lithium ion battery by carbothermal reduction

Journal

DIAMOND AND RELATED MATERIALS
Volume 20, Issue 3, Pages 413-417

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2011.01.012

Keywords

Sn; Carbonaceous mixture; Composite anode; Carbothermal reduction; Lithium ion batteries

Ask authors/readers for more resources

A composite anode material was prepared with confined tin into multiwall carbon nanotube by carbothermal reduction. The morphology and structure of Sn/C (nature graphite) and Sn/C-C (nature graphite + multiwall carbon nanotube) were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It was revealed that the additive of MWCNT was a crucial factor to improve Sn /C composite anodes for cyclability and reversible capacity. Volume changes and morphological changes in Sn can be reduced by encasing MWCNT in a carbonaceous material that has sufficient flexibility to act as a buffer. Electrochemical performance test shows that the charge capacity of the Sn/C-C (NG + MWCNT) electrode in the fiftieth cycle was 400 mAh/g, which was higher than that of the Sn/C (NG) electrode. After 50 cycles, the retention of the Sn/C-C electrode and the Sn/C electrode was 80% and 63%, respectively. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available