4.6 Article Proceedings Paper

Comparative electron diffraction study of the diamond nucleation layer on Ir(001)

Journal

DIAMOND AND RELATED MATERIALS
Volume 17, Issue 7-10, Pages 1029-1034

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.diamond.2008.02.040

Keywords

diamond growth and characterisation; heteroepitaxy; bias enhanced nucleation; iridium; XPD

Ask authors/readers for more resources

The carbon layer formed during the bias enhanced nucleation (BEN) procedure on iridium has been studied by different electron diffraction techniques. In reflection high energy electron diffraction (RHEED) and low energy electron diffraction (LEED) the carbon nucleation layer does not give any indication of crystalline diamond even if the presence of domains proves successful nucleation. In contrast, X-ray photoelectron diffraction (XPD) shows a clear C 1s pattern when domains are present after BEN. The anisotropy in the Ir XPD patterns is reduced after BEN while the fine structure is essentially identical compared to a single crystal Ir film. The change in the Ir XPD patterns after BEN can be explained by the carbon layer on top of a crystallographically unmodified Ir film. The loss and change in the fine structure of the C Is patterns as compared to a single crystal diamond film are discussed in terms of mosaicity and a defective structure of the ordered fraction within the carbon layer. The present results suggest that the real structure of the BEN layer is more complex than a pure composition of small but perfect diamond crystallites embedded in an amorphous matrix. (C) 2008 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available