4.7 Article

Coenzyme Q10 attenuates diastolic dysfunction, cardiomyocyte hypertrophy and cardiac fibrosis in the db/db mouse model of type 2 diabetes

Journal

DIABETOLOGIA
Volume 55, Issue 5, Pages 1544-1553

Publisher

SPRINGER
DOI: 10.1007/s00125-012-2495-3

Keywords

Antioxidant; Cardiomyopathy; Diabetes; Remodelling; Superoxide

Funding

  1. Diabetes Australia Research Trust
  2. National Health and Medical Research Council of Australia (NHMRC) [526638]
  3. Victorian Government
  4. Australian Postgraduate Award
  5. Australian Research Council [FT0001657]
  6. NHMRC [586604, 317808, 472673]

Ask authors/readers for more resources

Aims/hypothesis An increase in the production of reactive oxygen species is commonly thought to contribute to the development of diabetic cardiomyopathy. This study aimed to assess whether administration of the antioxidant coenzyme Q(10) would protect the diabetic heart against dysfunction and remodelling, using the db/db mouse model of type 2 diabetes. Furthermore, we aimed to compare the efficacy of coenzyme Q(10) to that of the ACE inhibitor ramipril. Methods Six-week-old non-diabetic db/+ mice and diabetic db/db mice received either normal drinking water or water supplemented with coenzyme Q(10) for 10 weeks. Endpoint cardiac function was assessed by echocardiography and catheterisation. Ventricular tissue was collected for histology, gene expression and protein analysis. Results Untreated db/db diabetic mice exhibited hyperglycaemia, accompanied by diastolic dysfunction and adverse structural remodelling, including cardiomyocyte hypertrophy, myocardial fibrosis and increased apoptosis. Systemic lipid peroxidation and myocardial superoxide generation were also elevated in db/db mice. Coenzyme Q(10) and ramipril treatment reduced superoxide generation, ameliorated diastolic dysfunction and reduced cardiomyocyte hypertrophy and fibrosis in db/db mice. Phosphorylation of Akt, although depressed in untreated db/db mice, was restored with coenzyme Q(10) administration. We postulate that preservation of cardioprotective Akt signalling may be a mechanism by which coenzyme Q(10)-treated db/db mice are protected from pathological cardiac hypertrophy. Conclusions/interpretation These data demonstrate that coenzyme Q(10) attenuates oxidative stress and left ventricular diastolic dysfunction and remodelling in the diabetic heart. Addition of coenzyme Q(10) to the current therapy used in diabetic patients with diastolic dysfunction warrants further investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available