4.7 Article

Exendin-4 increases histone acetylase activity and reverses epigenetic modifications that silence Pdx1 in the intrauterine growth retarded rat

Journal

DIABETOLOGIA
Volume 54, Issue 10, Pages 2606-2614

Publisher

SPRINGER
DOI: 10.1007/s00125-011-2250-1

Keywords

Beta cell; Epigenetics; Exendin-4; Histone; Intrauterine growth retardation; Pdx1

Funding

  1. National Institutes of Health [DK55704, DK062965]
  2. Lilly/Lawson Wilkins Pediatric Endocrine Research Fellowship
  3. University of Pennsylvania Institute of Translational Medicine and Therapeutics

Ask authors/readers for more resources

The abnormal intrauterine milieu of intrauterine growth retardation (IUGR) permanently alters gene expression and function of pancreatic beta cells leading to the development of diabetes in adulthood. Expression of the pancreatic homeobox transcription factor Pdx1 is permanently reduced in IUGR islets suggesting an epigenetic mechanism. Exendin-4 (Ex-4), a long-acting glucagon-like peptide-1 (GLP-1) analogue, given in the newborn period increases Pdx1 expression and prevents the development of diabetes in the IUGR rat. IUGR was induced by bilateral uterine artery ligation in fetal life. Ex-4 was given on postnatal days 1-6 of life. Islets were isolated at 1 week and at 3-12 months. Histone modifications, PCAF, USF1 and DNA methyltransferase (Dnmt) 1 binding were assessed by chromatin immunoprecipitation (ChIP) assays and DNA methylation was quantified by pyrosequencing. Phosphorylation of USF1 was markedly increased in IUGR islets in Ex-4 treated animals. This resulted in increased USF1 and PCAF association at the proximal promoter of Pdx1, thereby increasing histone acetyl transferase (HAT) activity. Histone H3 acetylation and trimethylation of H3K4 were permanently increased, whereas Dnmt1 binding and subsequent DNA methylation were prevented at the proximal promoter of Pdx1 in IUGR islets. Normalisation of these epigenetic modifications reversed silencing of Pdx1 in islets of IUGR animals. These studies demonstrate a novel mechanism whereby a short treatment course of Ex-4 in the newborn period permanently increases HAT activity by recruiting USF1 and PCAF to the proximal promoter of Pdx1 which restores chromatin structure at the Pdx1 promoter and prevents DNA methylation, thus preserving Pdx1 transcription.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available