4.7 Article

Adiponectin Resistance and Proinflammatory Changes in the Visceral Adipose Tissue Induced by Fructose Consumption via Ketohexokinase-Dependent Pathway

Journal

DIABETES
Volume 64, Issue 2, Pages 508-518

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db14-0411

Keywords

-

Funding

  1. American Diabetes Association [7-12-BS-162]
  2. Gatorade Funds

Ask authors/readers for more resources

An epidemic of obesity and type 2 diabetes is linked with the increase in consumption of fructose-containing sugars, such as sucrose and high-fructose corn syrup. In mammalian cells, fructose is metabolized predominantly via phosphorylation to fructose-1 phosphate by ketohexokinase (KHK) or by alternative pathways. Here we demonstrate that a KHK-dependent pathway mediates insulin resistance and inflammatory changes in the visceral fat in response to high fructose. We used mice (males, C57BL/6 background) including littermate wildtype control and mice lacking both isoforms of KHK (KHK-null). Fructose diet induced metabolic syndrome, including visceral obesity, insulin resistance, proinflammatory changes in the visceral fat (production of proinflammatory adipokines and macrophage infiltration), the endoplasmic reticulum stress signaling, and decrease of the high-molecular weight adiponectin followed by decrease in the downstream signaling. KHK-KO mice consuming the same high-fructose diet remained lean, with normal insulin sensitivity and healthy visceral adipose tissue with normal adiponectin function not distinguishable from the control by any of the tested parameters. This study demonstrates that blocking KHK and redirecting fructose metabolism to alternative pathways is an effective way to prevent visceral obesity and insulin resistance induced by high fructose, a widespread component of Western diets.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available