4.7 Article

Impaired Glucose Tolerance in the Absence of Adenosine A1 Receptor Signaling

Journal

DIABETES
Volume 60, Issue 10, Pages 2578-2587

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db11-0058

Keywords

-

Funding

  1. National Institutes of Health (NIH)

Ask authors/readers for more resources

OBJECTIVE-The role of adenosine (ADO) in the regulation of glucose homeostasis is not clear. In the current study, we used A1-ADO receptor (A1AR)-deficient mice to investigate the role of ADO/A1AR signaling for glucose homeostasis. RESEARCH DESIGN AND METHODS-After weaning, A1AR(-/-) and wild-type mice received either a standard diet (12 kcal% fat) or high-fat diet (HFD; 45 kcal% fat). Body weight, fasting plasma glucose, plasma insulin, and intraperitoneal glucose tolerance tests were performed in 8-week-old mice and again after 12-20 weeks of subsequent observation. Body composition was quantified by magnetic resonance imaging and epididymal fat-pad weights. Glucose metabolism was investigated by hyperinsulinemic-euglycemic clamp studies. To describe pathophysiological mechanisms, adipokines and Akt phosphorylation were measured. RESULTS-A1AR(-/-) mice were significantly heavier than wild-type mice because of an increased fat mass. Fasting plasma glucose and insulin were significantly higher in A1AR(-/-) mice after weaning and remained higher in adulthood. An intraperitoneal glucose challenge disclosed a significantly slower glucose clearance in A1AR(-/-) mice. An HFD enhanced this phenotype in A1AR(-/-) mice and unmasked a dysfunctional insulin secretory mechanism. Insulin sensitivity was significantly impaired in A1AR(-/-) mice on the standard diet shortly after weaning. Clamp studies detected a significant decrease of net glucose uptake in A1AR(-/-) mice and a reduced glucose uptake in muscle and white adipose tissue. Effects were not triggered by leptin deficiency but involved a decreased Akt phosphorylation. CONCLUSIONS-ADO/A1AR signaling contributes importantly to insulin-controlled glucose homeostasis and insulin sensitivity in C57BL/6 mice and is involved in the metabolic regulation of adipose tissue. Diabetes 60:2578-2587, 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available