4.7 Article

Endothelin-1 Reduces Glucose Uptake in Human Skeletal Muscle In Vivo and In Vitro

Journal

DIABETES
Volume 60, Issue 8, Pages 2061-2067

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db10-1281

Keywords

-

Funding

  1. Swedish Research Council [10857, 12669]
  2. Swedish Heart and Lung Foundation
  3. Novo Nordisk Foundation
  4. Hedlund Foundation
  5. State of Sao Paulo Research Foundation, Brazil
  6. Swedish Diabetes Association
  7. King Gustav Vth and Queen Victoria Foundation
  8. Johan and Jakob Soderbergs Foundation
  9. Karolinska Institute
  10. Stockholm County Council

Ask authors/readers for more resources

OBJECTIVE-Endothelin (ET)-1 is a vasoconstrictor and proinflammatory peptide that may interfere with glucose uptake. Our objective was to investigate whether exogenous ET-1 affects glucose uptake in the forearm of individuals with insulin resistance and in cultured human skeletal muscle cells. RESEARCH DESIGN AND METHODS-Nine male subjects (aged 61 +/- 3 years) with insulin resistance (M value <5.5 mg/kg/min or a homeostasis model assessment of insulin resistance index >2.5) participated in a protocol using saline infusion followed by ET-1 infusion (20 pmol/min) for 2 h into the brachial artery. Forearm blood flow (FBF), endothelium-dependent vasodilatation, and endothelium-independent vasodilatation were assessed. Molecular signaling and glucose uptake were determined in cultured skeletal muscle cells. RESULTS-ET-1 decreased forearm glucose uptake (FGU) by 39% (P < 0.05) after the 2-h infusion. ET-1 reduced basal FBF by 36% alter the 2-h infusion (P < 0.05) and impaired both endothelium-dependent vasodilatation (P < 0.01) and endothelium-independent vasodilatation (P < 0.05). ETA and ETB receptor expression was detected on cultured skeletal muscle cells. One-hour ET-1 incubation increased glucose uptake in cells from healthy control subjects but not from type 2 diabetic patients. Incubation with ET-1 for 24 h reduced glucose uptake in cells from healthy subjects. ET-1 decreased insulin-stimulated Akt phosphorylation and increased phosphorylation of insulin receptor substrate-1 serine 636. CONCLUSIONS-ET-1 not only induces vascular dysfunction but also acutely impairs FGU in individuals with insulin resistance and in skeletal muscle cells from type 2 diabetic subjects. These findings suggest that ET-1 may contribute to the development of insulin resistance in skeletal muscle in humans. Diabetes 60:2061-2067, 2011

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available