4.7 Article

Iron Overload and Diabetes Risk: A Shift From Glucose to Fatty Acid Oxidation and Increased Hepatic Glucose Production in a Mouse Model of Hereditary Hemochromatosis

Journal

DIABETES
Volume 60, Issue 1, Pages 80-87

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db10-0593

Keywords

-

Funding

  1. National Institutes of Health [DK-81842, HL73167]
  2. Research Service of the Veterans Administration
  3. University of Utah Center for Clinical and Translational Research [UL1-RR025764]
  4. NATIONAL CENTER FOR RESEARCH RESOURCES [UL1RR025764] Funding Source: NIH RePORTER
  5. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R01HL073167] Funding Source: NIH RePORTER
  6. NATIONAL INSTITUTE OF DIABETES AND DIGESTIVE AND KIDNEY DISEASES [R01DK081842] Funding Source: NIH RePORTER

Ask authors/readers for more resources

OBJECTIVE Excess tissue iron levels are a risk factor for diabetes, but the mechanisms underlying the association are incompletely understood. We previously published that mice and humans with a form of hereditary iron overload, hemochromatosis, exhibit loss of beta-cell mass. This effect by itself is not sufficient, however, to fully explain the diabetes risk phenotype associated with all forms of iron overload. RESEARCH DESIGN AND METHODS We therefore examined glucose and fatty acid metabolism and hepatic glucose production in vivo and in vitro in a mouse model of hemochromatosis in which the gene most often mutated in the human disease, HFE, has been deleted (Hfe(-/-)). RESULTS Although Hfe(-/-) mice exhibit increased glucose uptake in skeletal muscle, glucose oxidation is decreased and the ratio of fatty acid to glucose oxidation is increased. On a high-fat diet, the Hfe(-/-) mice exhibit increased fatty acid oxidation and are hypermetabolic. The decreased glucose oxidation in skeletal muscle is due to decreased pyruvate dehydrogenase (PDH) enzyme activity related, in turn, to increased expression of PDH kinase 4 (pdk4). Increased substrate recycling to liver contributes to elevated hepatic glucose production in the Hfe(-/-) mice. CONCLUSIONS Increased hepatic glucose production and metabolic inflexibility, both of which are characteristics of type 2 diabetes, may contribute to the risk of diabetes with excessive tissue iron.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available