4.7 Article

N-Glycosylation of Carnosinase Influences Protein Secretion and Enzyme Activity Implications for Hyperglycemia

Journal

DIABETES
Volume 59, Issue 8, Pages 1984-1990

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db09-0868

Keywords

-

Ask authors/readers for more resources

OBJECTIVE-The (CTG)(n) polymorphism in the serum carnosinase (CN-1) gene affects CN-1 secretion Since CN-1 is heavily glycosylated and glycosylation might influence protein secretion as well, we tested the role of N-glycosylation for CN-1 secretion and enzyme activity. We also tested whether CN-1 secretion is changed under hyperglycemic conditions. RESULTS-N-glycosylation of CN-1 was either inhibited by tunicamycin in pCSII-CN-1-transfected Cos-7 cells or by stepwise deletion of its three putative N-glycosylation sites. CN-1 protein expression, N-glycosylation, and enzyme activity were assessed in cell extracts and supernatants. The influence of hyperglycemia on CN-1 enzyme activity in human serum was tested in homozygous (CTG)(5) diabetic patients and healthy control subjects Tunicamycin completely inhibited CN-1 secretion Deletion of all N-glycosylation sites was required to reduce CN-1 secretion efficiency. Enzyme activity was already diminished when two sites were deleted. In pCSII-CN-1-transfected Cos-7 cells cultured in medium containing 25 mmol/l D-glucose, the immature 61 kilodaltons (kDa) CN-1 immune reactive band was not detected. This was paralleled by an increased GlcNAc expression in cell lysates and CN-1 expression in the supernatants. Homozygous (CTG)(5) diabetic patients had significantly higher serum CN-1 activity compared with genotype-matched, healthy control subjects CONCLUSIONS-We conclude that apart from the (CTG)(n) polymorphism in the signal peptide of CN-1, N-glycosylation is essential for appropriate secretion and enzyme activity. Since hyperglycemia enhances CN-1 secretion and enzyme activity, our data suggest that poor blood glucose control in diabetic patients might result in an increased CN-1 secretion even in the presence of the (CTG)(5) allele Diabetes 59:1984-1990, 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available