4.7 Article

Neutralization of Interleukin-16 Protects Nonobese Diabetic Mice From Autoimmune Type 1 Diabetes by a CCL4-Dependent Mechanism

Journal

DIABETES
Volume 59, Issue 11, Pages 2862-2871

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db09-0131

Keywords

-

Funding

  1. Canadian Institutes of Health Research [MOP 64386]
  2. Juvenile Diabetes Research Foundation International
  3. Ontario Research and Development Challenge Fund
  4. Canadian Diabetes Association

Ask authors/readers for more resources

OBJECTIVE-The progressive infiltration of pancreatic islets by lymphocytes is mandatory for development of autoimmune type 1 diabetes. This inflammatory process is mediated by several mediators that are potential therapeutic targets to arrest development of type 1 diabetes. In this study, we investigate the role of one of these mediators, interleukin-16 (IL-16), in the pathogenesis of type 1 diabetes in NOD mice. RESEARCH DESIGN AND METHODS-At different stages of progression of type 1 diabetes, we characterized IL-16 in islets using GEArray technology and immunoblot analysis and also quantitated IL-16 activity in cell migration assays. IL-16 expression was localized in islets by immunofluorescence and confocal imaging. In vivo neutralization studies were performed to assess the role of IL-16 in the pathogenesis of type 1 diabetes. RESULTS-The increased expression of IL-16 in islets correlated with the development of invasive insulitis. IL-16 immunoreactivity was found in islet infiltrating T-cells, B-cells, NK-cells, and dendritic cells, and within an insulitic lesion, IL-16 was derived from infiltrating cells. CD4(+) and CD8(+) T-cells as well as B220(+) B-cells were identified as sources of secreted IL-16. Blockade of IL-16 in vivo protected against type 1 diabetes by interfering with recruitment of CD4(+) T-cells to the pancreas, and this protection required the activity of the chemokine CCL4. CONCLUSIONS-IL-16 production by leukocytes in islets augments the severity of insulitis during the onset of type 1 diabetes. IL-16 and CCL4 appear to function as counterregulatory proteins during disease development. Neutralization of IL-16 may represent a novel therapy for the prevention of type 1 diabetes. Diabetes 59:2862-2871, 2010

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available