4.7 Article

Differences in the Central Anorectic Effects of Glucagon-Like Peptide-1 and Exendin-4 in Rats

Journal

DIABETES
Volume 58, Issue 12, Pages 2820-2827

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db09-0281

Keywords

-

Funding

  1. National Institutes of Health (NIH) [R01 DK54890, R01 DK57900]
  2. American Diabetes Association [7-06-PST-02]
  3. Juvenile Diabetes Research Foundation [1-2006-796]
  4. Amylin Pharmaceuticals

Ask authors/readers for more resources

OBJECTIVE-Glucagon-like peptide (GLP)-1 is a regulatory peptide synthesized in the gut and the brain that plays an important role in the regulation of food intake. Both GLP-1 and exendin (Ex)-4, a long-acting GLP-1 receptor (GLP-1r) agonist, reduce food intake when administered intracerebroventricularly, whereas Ex4 is much more potent at suppressing food intake when given peripherally. It has generally been hypothesized that this difference is due to the relative pharmacokinetic profiles of GLP-1 and Ex4, but it is possible that the two peptides control feeding via distinct mechanisms. RESEARCH DESIGN AND METHODS-In this study, the anorectic effects of intracerebroventricular GLP-1 and Ex4, and the sensitivity of these effects to GLP-1r antagonism, were compared in rats. In addition, the GLP-1r dependence of the anorectic effect of intracerebroventricular Ex4 was assessed in GLP-1r(-/-) mice. RESULTS-Intracerebroventricular Ex4 was 100-fold more potent than GLP-1 at reducing food intake, and this effect was insensitive to GLP-1r antagonism. However, GLP-1r antagonists completely blocked the anorectic effect of intraperitoneal Ex4. Despite the insensitivity of intracerebroventricular Ex4 to GLP-1r antagonism, intracerebroventricular Ex4 failed to reduce food intake in GLP-1r(-/-) mice. CONCLUSIONS-These data suggest that although GLP-1rs are required for the actions of Ex4, there appear to be key differences in how GLP-1 and Ex4 interact with central nervous system GLP-1r and in how Ex4 interacts with GLP-1r in the brain versus the periphery. A better understanding of these unique differences may lead to expansion and/or improvement of GLP-1-based therapies for type 2 diabetes and obesity. Diabetes 58: 2820-2827, 2009

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available