4.7 Article

Increased GABAergic tone in the ventromedial hypothalamus contributes to suppression of counterregulatory reponses after antecedent Hypoglycemia

Journal

DIABETES
Volume 57, Issue 5, Pages 1363-1370

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db07-1559

Keywords

-

Funding

  1. NIDDK NIH HHS [R37 DK020495, R01 DK020495, DK-20495, F32 DK077461-01, F32 DK077461-02, F32 DK077461] Funding Source: Medline

Ask authors/readers for more resources

OBJECTIVE-We have previously demonstrated that modulation of gamma -aminobutyric acid (GABA) inhibitory tone in the ventromedial hypothalamus (VMH), an important glucose-sensing region in the brain, modulates the magnitude of glucagon and sympathoadrenal responses to hypoglycemia. In the current study, we examined whether increased VMH GABAergic tone may contribute to suppression of counterregulatory responses after recurrent hypoglycemia. RESEARCH DESIGN AND METHODS-To test this hypothesis, we quantified expression of the GABA synthetic enzyme, glutamic acid decarboxylase (GAD), in the VMH of control and recurrently hypoglycemic rats. Subsequently, we used microdialysis and microinjection techniques to assess changes in VMH GABA levels and the effects of GABA(A) receptor blockade on counterregulatory responses to a standardized hypoglycemic stimulus. RESULTS-Quantitative RT-PCR and inummoblots in recurrently hypoglycemic animals revealed that GAD(65) mRNA and protein were increased 33 and 580%, respectively. Basal VMH GABA concentrations were more than threefold higher in recurrently hypoglycemic animals. Furthermore, whereas VMH GABA levels decreased in both control and recurrently hypoglycemic animals with the onset of hypoglycemia, the fall was not significant in recurrently hypoglycemic rats. During hypoglycemia recurrently hypoglycemic rats exhibited a 49-63% reduction in glucagon and epinephrine release. These changes were reversed by delivery of a GABA, receptor antagonist to the VMH. CONCLUSIONS-Our data suggest that recurrent hypoglycemia increases GABAergic inhibitory tone in the VMH and that this, in turn, suppresses glucagon and sympathoadrenal responses to subsequent bouts of acute hypoglycemia. Thus, hypoglycemia-associated autonomic failure may be due in part to a relative excess of the inhibitory neurotransmitter, GABA, within the VMH.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available