4.7 Article

Oxidative Stress Regulates Adipocyte Apolipoprotein E and Suppresses Its Expression in Obesity

Journal

DIABETES
Volume 57, Issue 11, Pages 2992-2998

Publisher

AMER DIABETES ASSOC
DOI: 10.2337/db08-0592

Keywords

-

Funding

  1. National Institutes of Health [DK-71711]

Ask authors/readers for more resources

OBJECTIVE-Endogenous expression of apolipoprotein E (apoE) has a significant impact on adipocyte lipid metabolism and is markedly suppressed in obesity. Adipose tissue oxidant stress is emerging as an important mediator of adipocyte dysfunction. These studies were undertaken to evaluate the role of oxidant stress for regulation of adipocyte apoE. RESEARCH DESIGN AND METHODS-ApoE gene and protein expression in 3T3-L1 adipocytes or mature adipocytes and adipose tissue from C57/BL6 mice was evaluated after induction of oxidant stress. The response of adipose tissue and adipocytes from obese compared with lean mice to antioxidants was also assessed. RESULTS-Oxidant stress in 3T3-L1 cells or adipocytes and adipose tissue from lean mice significantly reduced apoE mRNA and protein level. Inclusion of an antioxidant eliminated this reduction. Oxidant stress was accompanied by activation of the nuclear factor-kappa B (NF-kappa B) transcription complex, and its effect on apoE was eliminated by an NF-kappa B activation inhibitor. Treatment of freshly isolated adipose tissue or mature adipocytes from obese mice with antioxidant increased apoE expression but had no effect on cells or tissue from lean mice. Incubation of freshly isolated adipocytes from lean mice with stromovascular cells from obese mice significantly suppressed adipocyte apoE compared with incubation with stromovascular cells from lean mice, but this suppression was reversed by inclusion of antioxidant or a neutralizing antibody to tumor necrosis factor-alpha. CONCLUSIONS-Oxidant stress significantly modulates adipose tissue and adipocyte apoE expression. Furthermore, oxidant stress contributes to suppression of adipocyte apoE in obesity. This suppression depends on interaction between adipose tissue stromovascular cells and adipocytes. Diabetes 57: 2992-2998, 2008

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available