4.4 Article

Ion Imaging During Axolotl Tail Regeneration In Vivo

Journal

DEVELOPMENTAL DYNAMICS
Volume 239, Issue 7, Pages 2048-2057

Publisher

WILEY-BLACKWELL
DOI: 10.1002/dvdy.22323

Keywords

ion imaging; cell membrane potential; tail regeneration; axolotl

Funding

  1. MeDDrive-33 program of TU Dresden [Ozkucur_60.194]

Ask authors/readers for more resources

Several studies have reported that endogenous ion currents are involved in a wide range of biological processes from single cell and tissue behavior to regeneration. Various methods are used to assess intracellular and local ion dynamics in biological systems, e.g., patch clamping and vibrating probes. Here, we introduce an approach to detect ion kinetics in vivo using a noninvasive method that can electrophysiologically characterize an entire experimental tissue region or organism. Ion-specific vital dyes have been successfully used for live imaging of intracellular ion dynamics in vitro. Here, we demonstrate that cellular pH, cell membrane potential, calcium, sodium and potassium can be monitored in vivo during tail regeneration in the axolotl (Ambystoma mexicanum) using ion-specific vital dyes. Thus, we suggest that ion-specific vital dyes can be a powerful tool to obtain electrophysiological data during crucial biological events in vivo. Developmental Dynamics 239:2048-2057, 2010. (C) 2010 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available