4.4 Article

In Vivo Imaging of the Cyclic Changes in Cross-sectional Shape of the Ventricular Segment of Pulsating Embryonic Chick Hearts at Stages 14 to 17: A Contribution to the Understanding of the Ontogenesis of Cardiac Pumping Function

Journal

DEVELOPMENTAL DYNAMICS
Volume 238, Issue 12, Pages 3273-3284

Publisher

WILEY
DOI: 10.1002/dvdy.22159

Keywords

heart development; cardiac contraction; in vivo imaging; optical coherence tomography

Funding

  1. Department of Pediatric Cardiology
  2. Intensive Care Medicine at Hannover Medical School

Ask authors/readers for more resources

The cardiac cycle-related deformations of tubular embryonic hearts were traditionally described as concentric narrowing and widening of a tube of circular cross-section. Using optical coherence tomography (OCT), we have recently shown that, during the cardiac cycle, only the myocardial tube undergoes concentric narrowing and widening while the endocardial tube undergoes eccentric narrowing and widening, having an elliptic cross-section at end-diastole and a slit-shaped cross-section at end-systole. Due to technical limitations, these analyses were confined to early stages of ventricular development (chick embryos, stages 10-13). Using a modified OCT-system, we now document, for the first time, the cyclic changes in cross-sectional shape of beating embryonic ventricles at stages 14 to 17. We show that during these stages (1) a large area of diminished cardiac jelly appears at the outer curvature of the ventricular region associated with formation of endocardial pouches; (2) the ventricular endocardial lumen acquires a bell-shaped cross-section at end-diastole and becomes compressed like a fireplace bellows during systole; (3) the contracting portions of the embryonic ventricles display stretching along its baso-apical axis at end-systole. The functional significance of our data is discussed with respect to early cardiac pumping function. Developmental Dynamics 238:3273-3284, 2009. (C) 2009 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available