4.4 Article

The physical state of fibronectin matrix differentially regulates morphogenetic movements in vivo

Journal

DEVELOPMENTAL BIOLOGY
Volume 327, Issue 2, Pages 386-398

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2008.12.025

Keywords

Fibronectin; Gastrulation; Xenopus; Morphogenesis; Integrin; Matrix assembly; Epiboly; Polarity; Migration; Convergent extension

Funding

  1. USPHS [HD26402]

Ask authors/readers for more resources

This study demonstrates that proper spatiotemporal expression and the physical assembly state of fibronectin (FN) matrix play key roles in the regulation of morphogenetic cell movements in vivo. We examine the progressive assembly and 3D fibrillar organization of FN and its role in regulating cell and tissue movements in Xenopus embryos. Expression of the 70 kD N-terminal fragment of FN blocks FN fibril assembly at gastrulation but not initial FN binding to integrins at the cell surface. We find that fibrillar FN is necessary to maintain cell polarity through oriented cell division and to promote epiboly, possibly through maintenance of tissue-surface tension. In contrast, FN fibrils are dispensable for convergence and extension movements required for axis elongation. Closure of the migratory mesendodermal mantle was accelerated in the absence of a fibrillar matrix. Thus, the macromolecular assembly of FN matrices may constitute a general regulatory mechanism for coordination of distinct morphogenetic movements. (C) 2008 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available