4.4 Article

LIM family transcription factors regulate the subtype-specific morphogenesis of retinal horizontal cells at post-migratory stages

Journal

DEVELOPMENTAL BIOLOGY
Volume 330, Issue 2, Pages 318-328

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2009.04.002

Keywords

Retinal horizontal cell; Neuronal subtype; LIM family transcription factors; Conditional gene expression

Funding

  1. Japan Society for the Promotion of Science (JSPS)

Ask authors/readers for more resources

In the nervous system, transcription factor expression in progenitor and/or nascent neurons regulates cell type specification. Although the functions of these transcription factors at early stages are well established, whether or not they are required during late developmental periods remains an open question. To address this issue, we conditionally manipulated gene expression using a recently developed transposon-mediated gene transfer system combined with in ovo electroporation. In chicken retinas, horizontal cells are classified into three subtypes according to their characteristic neuronal morphology. Two LIM family transcription factors, Lim1 and Isl1, begin to be expressed in a distinct subset of nascent retinal neurons, which results in complementary expression of these genes in mature retinas in type I and type II/III horizontal cells, respectively. Overexpression of Isl1 in post-migratory horizontal cells represses endogenous Lim1 expression and increases the number of neurons with a dendritic morphology characteristic of type II horizontal cells, which normally express Isl1. Inhibition of Lim1 function by expression of a dominant negative form Lim1 perturbs axonal morphogenesis of type I horizontal cells. Therefore, we propose that LIM family transcription factors are required for subtype-specific morphogenesis of horizontal cells at later stages of retinal development. (C) 2009 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available