4.4 Article

Mtx2 directs zebrafish morphogenetic movements during epiboly by regulating microfilament formation

Journal

DEVELOPMENTAL BIOLOGY
Volume 314, Issue 1, Pages 12-22

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ydbio.2007.10.050

Keywords

epiboly; Mtx2; Mxtx2; gastrulation; morphogenetic movements; yolk syncytial layer (YSL); zebrafish; endoderm; microfilaments; F-actin

Ask authors/readers for more resources

The homeobox transcription factor Mtx2 is essential for epiboly, the first morphogenetic movement of gastrulation in zebrafish. Morpholino knockdown of Mtx2 results in stalling of epiboly and lysis due to yolk rupture. However, the mechanism of Mtx2 action is unknown. The role of mtx2 is surprising as most mix/bix family genes are thought to have roles in mesendoderm specification. Using a transgenic sox17-promoter driven EGFP line, we show that Mtx2 is not required for endoderm specification but is required for correct morphogenetic movements of endoderm and axial mesoderm. During normal zebrafish development, mtx2 is expressed at both the blastoderm margin and in the zebrafish equivalent of visceral endoderm, the extra-embryonic yolk syncytial layer (YSL). We show that formation of the YSL is not Mtx2 dependent, but that Mtx2 directs spatial arrangement of YSL nuclei. Furthermore, we demonstrate that Mtx2 knockdown results in loss of the YSL F-actin ring, a microfilament structure previously shown to be necessary for epiboly progression. In summary, we propose that Mtx2 acts within the YSL to regulate morphogenetic movements of both embryonic and extra-embryonic tissues, independently of cell fate specification. Crown Copyright (C) 2007 Published by Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available