4.7 Article

Antioxidant Activity of Magnolol and Honokiol: Kinetic and Mechanistic Investigations of Their Reaction with Peroxyl Radicals

Journal

JOURNAL OF ORGANIC CHEMISTRY
Volume 80, Issue 21, Pages 10651-10659

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/acs.joc.5b01772

Keywords

-

Funding

  1. Italian MIUR [PRIN 2010-2011 2010PFLRJR]
  2. University of Bologna (FARB) [FFBO123154]
  3. COST action [CM1201]
  4. CINECA [IsC29]

Ask authors/readers for more resources

Magnolol and honokiol, the bioactive phyto-chemicals contained in Magnolia officinalis, are uncommon antioxidants bearing isomeric bisphenol cores substituted with allyl functions. We have elucidated the chemistry behind their antioxidant activity by experimental and computational methods. In the inhibited autoxidation of cumene and styrene at 303 K, magnolol trapped four peroxyl radicals, with a kith of 6.1 x 10(4) M-1 s(-1) in chlorobenzene and 6.0 x 10(3) M-1 s(-1) in acetonitrile, and honokiol trapped two peroxyl radicals in chlorobenzene (k(inh) = 3.8 x 10(4) M-1 s(-1)) and four peroxyl radicals in acetonitrile (k(inh) = 9.5 x 10(3) M-1 s(-1)). Their different behavior arises from a combination of intramolecular hydrogen bonding among the reactive OH groups (in magnolol) and of the OH groups with the aromatic and allyl pi-systems, as confirmed by FT-IR spectroscopy and DFT calculations. Comparison with structurally related 3,3',5,5'-tetramethylbiphenyl-4,4'-diol, 2-allylphenol, and 2-allylanisole allowed us to exclude that the antioxidant behavior of magnolol and honokiol is due to the allyl groups. The reaction of the allyl group with a peroxyl radical (C-H hydrogen abstraction) proceeds with rate constant of 1.1 M-1 s(-1) at 303 K. Magnolol and honokiol radicals do not react with molecular oxygen and produce no superoxide radical under the typical settings of inhibited autoxidations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available