4.6 Article

Molecular characterisation of RIG-I-like helicases in the black flying fox, Pteropus alecto

Journal

DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY
Volume 36, Issue 4, Pages 657-664

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.dci.2011.11.008

Keywords

Innate immunity; Viral infection; Fruit bat; Preropus alecto; RIG-I; mda5; LGP2

Funding

  1. CSIRO CEO

Ask authors/readers for more resources

The RIG-I like helicases, RIG-I, mda5 and LGP2 are an evolutionarily conserved family of cytosolic pattern recognition receptors important in the recognition of viral RNA, and responsible for the innate induction of interferons and proinflammatory cytokines upon viral infection. Bats are natural reservoir hosts to a variety of RNA viruses that cause significant morbidity and mortality in other species: however the mechanisms responsible for the control of viral replication in bats are not understood. This report describes the molecular cloning and expression analysis of RIG-I, mda5 and LGP2 genes in the fruit bat Pteropus alecto, and is the first description of RIG-I like helicases from any species of bat. Our results demonstrate that P. alecto RIG-I, mda5 and LGP2 have similar primary structures and tissue expression patterns to their counterparts in humans and other mammals. Stimulation of bat kidney cells with synthetic dsRNA (poly I:C) induced high levels of interferon beta and rapid upregulation of all three helicases. These findings reveal that the cytoplasmic virus sensing machinery is present and intact in P. alecto. This study provides the foundation for further investigations into the interactions between bat RIG-I-like helicases and viruses to elucidate the mechanisms responsible for the asymptomatic nature of viral infections in bats. Crown Copyright (C) 2011 Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available