4.6 Article

Comparative genomics analysis of five families of antimicrobial peptide-like genes in seven ant species

Journal

DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY
Volume 38, Issue 2, Pages 262-274

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.dci.2012.05.003

Keywords

Innate immunity; Gene duplication; Gene loss; Tandem repeat; C-terminal extension

Funding

  1. National Natural Science Foundation of China [30730015, 30921006]
  2. National Basic Research Program of China [2010CB945300]

Ask authors/readers for more resources

Ants, as eusocial insects, live in dense groups with high connectivity, increasing the risk of pathogen spread and possibly driving the evolution of their antimicrobial immune system. Draft genomes of seven ant species provide a new source to undertake comparative study of their antimicrobial peptides (AMPS), key components of insect innate immunity. By using computational approaches, we analyzed five AMP families that include abaecins, hymenoptaecins, insect defensins, tachystatins, and crustins in ants, which comprise 69 new members. Among them, a new type of proline-rich abaecins was recognized and they are exclusively present in ants. Hymenoptaecins, a family of glycine-rich AMPs from Hymenoptera and Diptera, exhibit variable numbers of intragenic tandem repeats in a lineage-specific manner and all hymenoptaecins in ants have evolved an acidic C-terminal propeptide. In some ant species, insect defensins with the cysteine-stabilized alpha-helical and beta-sheet (CS alpha beta) fold and tachystatin-like AMPs with the inhibitor cysteine knot (ICK) fold have undergone gene expansion and differential gene loss. Moreover, extensive sequence diversity exists in the C-termini of the defensins and the ICK-type peptides and the n-loop of the defensins. Also, we identified for the first time a crustin-type AMP in ants, which are only known in crustaceans previously. These ant crustins evolutionarily gain an aromatic amino acid-rich insertion when compared with those of crustaceans. Our work not only enlarges the insect AMP resource, but also sheds light on the complexity and dynamic evolution of AMPs in ants. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available