4.7 Article

Congenital heart disease protein 5 associates with CASZ1 to maintain myocardial tissue integrity

Journal

DEVELOPMENT
Volume 141, Issue 15, Pages 3040-3049

Publisher

COMPANY OF BIOLOGISTS LTD
DOI: 10.1242/dev.106518

Keywords

Heart morphogenesis; Proliferation; Morphogenesis; Heart development; Cardiac; Congenital heart disease; Down's syndrome; Xenopus; CASTOR; CASZ1; CHD5; WRB; Cardiomyocyte

Funding

  1. National Institutes of Health/The National Heart, Lung, and Blood Institute (NIH/NHLBI) [RO1 DE018825, RO1 HL089641]
  2. American Heart Association (AHA) awards

Ask authors/readers for more resources

The identification and characterization of the cellular and molecular pathways involved in the differentiation and morphogenesis of specific cell types of the developing heart are crucial to understanding the process of cardiac development and the pathology associated with human congenital heart disease. Here, we show that the cardiac transcription factor CASTOR(CASZ1) directly interacts with congenital heart disease 5 protein (CHD5), which is also known as tryptophanrich basic protein (WRB), a gene located on chromosome 21 in the proposed region responsible for congenital heart disease in individuals with Down's syndrome. We demonstrate that loss of CHD5 in Xenopus leads to compromised myocardial integrity, improper deposition of basement membrane, and a resultant failure of hearts to undergo cell movements associated with cardiac formation. We further report that CHD5 is essential for CASZ1 function and that the CHD5-CASZ1 interaction is necessary for cardiac morphogenesis. Collectively, these results establish a role for CHD5 and CASZ1 in the early stages of vertebrate cardiac development.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available