4.7 Article

Artificial neural network model for turbulence promoter-assisted crossflow microfiltration of particulate suspensions

Journal

DESALINATION
Volume 338, Issue -, Pages 57-64

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2014.01.015

Keywords

Artificial neural network; Genetic algorithm; Turbulence promoter; Fouling; Flux improvement efficiency

Funding

  1. National Science Fund for Distinguished Young Scholars of China [21125628]
  2. National High Technology Research and Development Program of China [2012AA03A611]

Ask authors/readers for more resources

In this study, an artificial neural network (ANN) model for the turbulence promoter-assisted crossflow microfiltration (CFMF) process was successfully established, in which the inlet velocity, transmembrane pressure (TMP) and feed concentration were taken as inputs, and the flux improvement efficiency (FIE) by turbulence promoter was taken as output. Using the trained ANN model, the FIE can be predicted under CFMF operation conditions that are not included in the training database. It reveals that the FIE first increases and then decreases with increasing either TMP or inlet velocity, and increases with increasing feed concentration. Among three input variables, TMP has the most important effect on the FIE. The optimization of MP operation conditions was largely dependent on the feed concentration. The high FIE can be obtained by exerting both high inlet velocity (>0.7 m/s) and low TMP ( <30 kPa) at a relatively low feed concentration ( <1 g/L), and both high inlet velocity (>0.7 m/s) and high IMP (>70 kPa) at a relatively high feed concentration (>8 g/L). This study provides a useful guide for the applications of turbulence promoter in CFMF processes. (C) 2014 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available