4.7 Article

Integrated direct contact membrane distillation for olive mill wastewater treatment

Journal

DESALINATION
Volume 323, Issue -, Pages 31-38

Publisher

ELSEVIER
DOI: 10.1016/j.desal.2012.06.014

Keywords

Direct contact membrane distillation; Integrated system; Olive mill wastewater; Phenolic compounds; Membrane fouling; Concentration factor

Funding

  1. AECI (Agencia Espanola de Cooperacion Internacional, Ministerio de Asuntos Exteriores y de Cooperacion) [A/023127/09, A/032278/10]

Ask authors/readers for more resources

Direct contact membrane distillation (DCMD) process was applied for olive mill wastewater (OMW) treatment and its concentration using a commercial flat-sheet polytetrafluoroethylene membrane (TF200, Gelman) with 0.2 mu m mean pore size. The effects of the mean temperature and temperature difference on the DCMD permeate flux were studied. Two pre-treatment processes, coagulation/flocculation and microfiltration (MF), were considered and the effects of each one on the DCMD performance were investigated. MF was found to be the optimum pre-treatment to be integrated to DCMD for OMW. When the permeate temperature was kept constant at 20 degrees C, the DCMD permeate flux increased with the increase of the feed temperature. However, the permeate flux decreased with the feed phenol concentration of OMW. The concentration factor of each phenolic compound varied from 1.56 to 2.93. The main phenolic compound in the tested OMW samples was found to be the hydroxytyrosol, which was concentrated more than two times from 4.01 g/L to 8.16 g/L after 40 h of OMW processing by DCMD. The membrane fouling phenomenon was also studied. Results showed that the integrated MF/DCMD can be an effective process for the treatment and concentration of OMW obtaining clean water and a phenolic-rich concentrate. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available