4.7 Article

Removal of heavy metal ions by nanofiltration

Journal

DESALINATION
Volume 315, Issue -, Pages 2-17

Publisher

ELSEVIER
DOI: 10.1016/j.desal.2012.05.022

Keywords

Heavy metals; Nanofiltration membrane; Rejection; Permeate flux; Feed pH; Membrane fouling; Membrane characterisation; Membrane filtration; Water purification; Atomic force microscopy; AFM

Funding

  1. Ministry of High Education in Sultanate of Oman

Ask authors/readers for more resources

This study describes the rejection of heavy metal ions using a commercial nanofiltration membrane (NF270). The effect of feed pH, pressure and metal concentration on the metal rejections and permeate flux and in some cases permeate pH was explored. The results showed that with all metals examined (except As (III)), when the feed pH is below the isoelectric point, the rejection increased. NF270 rejected almost 100% of copper ions at low concentrations, but decreased to 58% at the highest concentration examined. Using 1000 mg/L concentration level, pH = 1.5 +/- 0.2 and 4 bar the rejection was 99%, 89% and 74% for cadmium, manganese and lead respectively. However at pH above the isoelectric point the average rejections decreased. NF270 was unable to retain As(III). The metals caused a flux decline due to membrane fouling in the order of severity: Cu2+ >Cd2+ approximate to Mn2+ > Pb2+ approximate to As3+. The correlation between adsorbed amounts of the metals onto NF270 with the normalised flux shows that as the amount increased the normalised flux decreased, except for arsenic that had a higher deposited amount and higher flux. The RMS roughness as obtained by AFM showed that roughness was decreased by membrane fouling. (C) 2012 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available