4.7 Article

Synthesis and characterization of low content of different SiO2 materials composite poly (vinylidene fluoride) ultrafiltration membranes

Journal

DESALINATION
Volume 285, Issue -, Pages 117-122

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2011.09.042

Keywords

Poly (vinylidene fluoride); SiO2; Composite; Ultrafiltration membrane

Ask authors/readers for more resources

A comparison of the morphology and performance of virgin poly (vinylidene fluoride) (PVDF) ultrafiltration (UF) membrane, and PVDF-composite membranes with low content of two different SiO2 (N-SiO2 and M-SiO2 particles) was carried out. Cross-sectional area and surface morphology of the membranes were observed by scanning electron microscopy and atomic force microscopy. Surface hydrophilicity of the porous membranes was determined through the measurement of a contact angle. Performance tests were conducted on the composite membranes through water flux and bovine serum albumin (BSA) retention. Average pore size and surface porosity were calculated based on the permeate flux. Thermal stability and mechanical stability were determined by thermogravimetric analysis and tensile stress tests. The results indicate that N-SiO2/PVDF (P-N) membranes possessed larger average pore size and porosity, which led to higher water flux and a slight decline in BSA retention. On the other hand, M-SiO2/PVDF (P-M) membranes had better mechanical stability and anti-fouling performance with enhanced membrane hydrophilicity and decreased membrane surface roughness. Both of the P-N and P-M membranes exhibited typical asymmetric morphology and improved thermal stability. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available