4.7 Article

Evaluation of a membrane bioreactor and nanofiltration for municipal wastewater reclamation: Trace contaminant control and fouling mitigation

Journal

DESALINATION
Volume 272, Issue 1-3, Pages 128-134

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.desal.2011.01.002

Keywords

Wastewater reclamation; Membrane bioreactor; Nanofiltration; Trace contaminant; Fouling mitigation

Funding

  1. Gwangju Institute of Science and Technology (GIST)

Ask authors/readers for more resources

A membrane bioreactor (MBR) and nanofiltration (NF) membrane processes were developed for municipal wastewater reclamation, and their performances, in terms of trace contaminant control and fouling mitigation, were evaluated and designed to meet water quality criteria and minimize flux decline. The dissolved contaminants in wastewater were poorly degraded by MBR but the microbial nitrification in MBR could greatly contribute to nitrogen removal in the MBR permeate through the addition of a NF membrane. Furthermore, most dissolved contaminants were efficiently removed by the NF membrane. However, the NF membrane was ineffective in the removal of boron. The org-N/C molar ratio was inversely correlated to SUVA and directly corresponded to the 3D FEEM, structural analysis, and IR spectra of organic matter in raw and treated water, and desorbed foulants. The observations obtained from rigorous characterization revealed that the hydrophilic fractions, which were comprised of polysaccharides and amino groups, played a major role in fouling formation of the MBR-NF system. In addition, strong amide IR peak in the NF-base supported the notion that amino groups were primarily responsible for the fouling formation of the NF membrane relative to the polysaccharides groups. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available