4.6 Article

Making yttria-stabilized tetragonal zirconia translucent

Journal

DENTAL MATERIALS
Volume 30, Issue 10, Pages 1195-1203

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.dental.2014.08.375

Keywords

Zirconia (Y-TZP); Microstructure; Grain size; Translucency; Optical birefringence; Light scattering

Funding

  1. United States National Institute of Dental and Craniofacial Research [R01 DE017925]
  2. United States National Science Foundation [CMMI-0758530]

Ask authors/readers for more resources

Objective. The aim of this study was to provide a design guideline for developing tetragonal yttria-stabilized zirconia with improved translucency. Methods. The translucency, the in-line transmission in particular, of 3 mol.% yttria-stabilized tetragonal zirconia (3Y-TZP) has been examined using the Rayleigh scattering model. The theory predicts that the in-line transmission of 3Y-TZP can be related to its thickness with grain size and birefringence the governing parameters. To achieve a threshold value of translucency, the critical grain size of 3Y-TZP was predicted for various thicknesses (0.3-2.0 mm). The threshold value was defined by a measured average in-line transmission value of a suite of dental porcelains with a common thickness of 1 mm. Our theoretical predictions were calibrated with one of the very few experimental data available in the literature. Results. For a dense, high-purity zirconia, its in-line transmission increased with decreasing grain size and thickness. To achieve a translucency similar to that of dental porcelains, a nanocyrstalline 3Y-TZP structure was necessitated, due primarily to its large birefringence and high refractive index. Such a grain size dependence became more pronounced as the 3Y-TZP thickness increased. For example, at a thickness of 1.3 mm, the mean grain size of a translucent 3Y-TZP should be 82 nm. At 1.5 mm and 2 mm thicknesses, the mean grain size needed to be 77 nm and 70 nm, respectively. Signcance. A promising future for zirconia restorations, with combined translucency and mechanical properties, can be realized by reducing its grain size. (C) 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available